Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Re-engineering specificity in 1,3-1, 4-β-glucanase to accept branched xyloglucan substrates.

Identifieur interne : 002D38 ( Main/Exploration ); précédent : 002D37; suivant : 002D39

Re-engineering specificity in 1,3-1, 4-β-glucanase to accept branched xyloglucan substrates.

Auteurs : Trevor Addington [Espagne] ; Barbara Calisto ; Mercedes Alfonso-Prieto ; Carme Rovira ; Ignasi Fita ; Antoni Planas

Source :

RBID : pubmed:21069723

Descripteurs français

English descriptors

Abstract

Family 16 carbohydrate active enzyme members Bacillus licheniformis 1,3-1,4-β-glucanase and Populus tremula x tremuloides xyloglucan endotransglycosylase (XET16-34) are highly structurally related but display different substrate specificities. Although the first binds linear gluco-oligosaccharides, the second binds branched xylogluco-oligosaccharides. Prior engineered nucleophile mutants of both enzymes are glycosynthases that catalyze the condensation between a glycosyl fluoride donor and a glycoside acceptor. With the aim of expanding the glycosynthase technology to produce designer oligosaccharides consisting of hybrids between branched xylogluco- and linear gluco-oligosaccharides, enzyme engineering on the negative subsites of 1,3-1,4-β-glucanase to accept branched substrates has been undertaken. Removal of the 1,3-1,4-β-glucanase major loop and replacement with that of XET16-34 to open the binding cleft resulted in a folded protein, which still maintained some β-glucan hydrolase activity, but the corresponding nucleophile mutant did not display glycosynthase activity with either linear or branched glycosyl donors. Next, point mutations of the 1,3-1,4-β-glucanase β-sheets forming the binding site cleft were mutated to resemble XET16-34 residues. The final chimeric protein acquired binding affinity for xyloglucan and did not bind β-glucan. Therefore, binding specificity has been re-engineered, but affinity was low and the nucleophile mutant of the chimeric enzyme did not show glycosynthase activity to produce the target hybrid oligosaccharides. Structural analysis by X-ray crystallography explains these results in terms of changes in the protein structure and highlights further engineering approaches toward introducing the desired activity.

DOI: 10.1002/prot.22884
PubMed: 21069723


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Re-engineering specificity in 1,3-1, 4-β-glucanase to accept branched xyloglucan substrates.</title>
<author>
<name sortKey="Addington, Trevor" sort="Addington, Trevor" uniqKey="Addington T" first="Trevor" last="Addington">Trevor Addington</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Calisto, Barbara" sort="Calisto, Barbara" uniqKey="Calisto B" first="Barbara" last="Calisto">Barbara Calisto</name>
</author>
<author>
<name sortKey="Alfonso Prieto, Mercedes" sort="Alfonso Prieto, Mercedes" uniqKey="Alfonso Prieto M" first="Mercedes" last="Alfonso-Prieto">Mercedes Alfonso-Prieto</name>
</author>
<author>
<name sortKey="Rovira, Carme" sort="Rovira, Carme" uniqKey="Rovira C" first="Carme" last="Rovira">Carme Rovira</name>
</author>
<author>
<name sortKey="Fita, Ignasi" sort="Fita, Ignasi" uniqKey="Fita I" first="Ignasi" last="Fita">Ignasi Fita</name>
</author>
<author>
<name sortKey="Planas, Antoni" sort="Planas, Antoni" uniqKey="Planas A" first="Antoni" last="Planas">Antoni Planas</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21069723</idno>
<idno type="pmid">21069723</idno>
<idno type="doi">10.1002/prot.22884</idno>
<idno type="wicri:Area/Main/Corpus">003017</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003017</idno>
<idno type="wicri:Area/Main/Curation">003017</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003017</idno>
<idno type="wicri:Area/Main/Exploration">003017</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Re-engineering specificity in 1,3-1, 4-β-glucanase to accept branched xyloglucan substrates.</title>
<author>
<name sortKey="Addington, Trevor" sort="Addington, Trevor" uniqKey="Addington T" first="Trevor" last="Addington">Trevor Addington</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Calisto, Barbara" sort="Calisto, Barbara" uniqKey="Calisto B" first="Barbara" last="Calisto">Barbara Calisto</name>
</author>
<author>
<name sortKey="Alfonso Prieto, Mercedes" sort="Alfonso Prieto, Mercedes" uniqKey="Alfonso Prieto M" first="Mercedes" last="Alfonso-Prieto">Mercedes Alfonso-Prieto</name>
</author>
<author>
<name sortKey="Rovira, Carme" sort="Rovira, Carme" uniqKey="Rovira C" first="Carme" last="Rovira">Carme Rovira</name>
</author>
<author>
<name sortKey="Fita, Ignasi" sort="Fita, Ignasi" uniqKey="Fita I" first="Ignasi" last="Fita">Ignasi Fita</name>
</author>
<author>
<name sortKey="Planas, Antoni" sort="Planas, Antoni" uniqKey="Planas A" first="Antoni" last="Planas">Antoni Planas</name>
</author>
</analytic>
<series>
<title level="j">Proteins</title>
<idno type="eISSN">1097-0134</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Bacillus (MeSH)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Enzyme Assays (MeSH)</term>
<term>Glucans (chemistry)</term>
<term>Glycoside Hydrolases (genetics)</term>
<term>Glycosyltransferases (genetics)</term>
<term>Molecular Dynamics Simulation (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Populus (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Engineering (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Recombinant Fusion Proteins (biosynthesis)</term>
<term>Recombinant Fusion Proteins (chemistry)</term>
<term>Recombinant Fusion Proteins (genetics)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Structural Homology, Protein (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
<term>Xylans (chemistry)</term>
<term>beta-Glucans (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Bacillus (MeSH)</term>
<term>Cristallographie aux rayons X (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Dosages enzymatiques (MeSH)</term>
<term>Glucanes (composition chimique)</term>
<term>Glycosidases (génétique)</term>
<term>Glycosyltransferase (génétique)</term>
<term>Ingénierie des protéines (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Motifs d'acides aminés (MeSH)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Populus (MeSH)</term>
<term>Protéines de fusion recombinantes (biosynthèse)</term>
<term>Protéines de fusion recombinantes (composition chimique)</term>
<term>Protéines de fusion recombinantes (génétique)</term>
<term>Similitude structurale de protéines (MeSH)</term>
<term>Simulation de dynamique moléculaire (MeSH)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Xylanes (composition chimique)</term>
<term>bêta-Glucanes (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glucans</term>
<term>Recombinant Fusion Proteins</term>
<term>Xylans</term>
<term>beta-Glucans</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glycoside Hydrolases</term>
<term>Glycosyltransferases</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Protéines de fusion recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glucanes</term>
<term>Protéines de fusion recombinantes</term>
<term>Xylanes</term>
<term>bêta-Glucanes</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glycosidases</term>
<term>Glycosyltransferase</term>
<term>Protéines de fusion recombinantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Bacillus</term>
<term>Crystallography, X-Ray</term>
<term>Enzyme Assays</term>
<term>Molecular Dynamics Simulation</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Site-Directed</term>
<term>Populus</term>
<term>Protein Binding</term>
<term>Protein Engineering</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Alignment</term>
<term>Structural Homology, Protein</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Bacillus</term>
<term>Cristallographie aux rayons X</term>
<term>Données de séquences moléculaires</term>
<term>Dosages enzymatiques</term>
<term>Ingénierie des protéines</term>
<term>Liaison aux protéines</term>
<term>Motifs d'acides aminés</term>
<term>Mutagenèse dirigée</term>
<term>Populus</term>
<term>Similitude structurale de protéines</term>
<term>Simulation de dynamique moléculaire</term>
<term>Spécificité du substrat</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Family 16 carbohydrate active enzyme members Bacillus licheniformis 1,3-1,4-β-glucanase and Populus tremula x tremuloides xyloglucan endotransglycosylase (XET16-34) are highly structurally related but display different substrate specificities. Although the first binds linear gluco-oligosaccharides, the second binds branched xylogluco-oligosaccharides. Prior engineered nucleophile mutants of both enzymes are glycosynthases that catalyze the condensation between a glycosyl fluoride donor and a glycoside acceptor. With the aim of expanding the glycosynthase technology to produce designer oligosaccharides consisting of hybrids between branched xylogluco- and linear gluco-oligosaccharides, enzyme engineering on the negative subsites of 1,3-1,4-β-glucanase to accept branched substrates has been undertaken. Removal of the 1,3-1,4-β-glucanase major loop and replacement with that of XET16-34 to open the binding cleft resulted in a folded protein, which still maintained some β-glucan hydrolase activity, but the corresponding nucleophile mutant did not display glycosynthase activity with either linear or branched glycosyl donors. Next, point mutations of the 1,3-1,4-β-glucanase β-sheets forming the binding site cleft were mutated to resemble XET16-34 residues. The final chimeric protein acquired binding affinity for xyloglucan and did not bind β-glucan. Therefore, binding specificity has been re-engineered, but affinity was low and the nucleophile mutant of the chimeric enzyme did not show glycosynthase activity to produce the target hybrid oligosaccharides. Structural analysis by X-ray crystallography explains these results in terms of changes in the protein structure and highlights further engineering approaches toward introducing the desired activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21069723</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>05</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2011</Year>
<Month>01</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1097-0134</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>79</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2011</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Proteins</Title>
<ISOAbbreviation>Proteins</ISOAbbreviation>
</Journal>
<ArticleTitle>Re-engineering specificity in 1,3-1, 4-β-glucanase to accept branched xyloglucan substrates.</ArticleTitle>
<Pagination>
<MedlinePgn>365-75</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/prot.22884</ELocationID>
<Abstract>
<AbstractText>Family 16 carbohydrate active enzyme members Bacillus licheniformis 1,3-1,4-β-glucanase and Populus tremula x tremuloides xyloglucan endotransglycosylase (XET16-34) are highly structurally related but display different substrate specificities. Although the first binds linear gluco-oligosaccharides, the second binds branched xylogluco-oligosaccharides. Prior engineered nucleophile mutants of both enzymes are glycosynthases that catalyze the condensation between a glycosyl fluoride donor and a glycoside acceptor. With the aim of expanding the glycosynthase technology to produce designer oligosaccharides consisting of hybrids between branched xylogluco- and linear gluco-oligosaccharides, enzyme engineering on the negative subsites of 1,3-1,4-β-glucanase to accept branched substrates has been undertaken. Removal of the 1,3-1,4-β-glucanase major loop and replacement with that of XET16-34 to open the binding cleft resulted in a folded protein, which still maintained some β-glucan hydrolase activity, but the corresponding nucleophile mutant did not display glycosynthase activity with either linear or branched glycosyl donors. Next, point mutations of the 1,3-1,4-β-glucanase β-sheets forming the binding site cleft were mutated to resemble XET16-34 residues. The final chimeric protein acquired binding affinity for xyloglucan and did not bind β-glucan. Therefore, binding specificity has been re-engineered, but affinity was low and the nucleophile mutant of the chimeric enzyme did not show glycosynthase activity to produce the target hybrid oligosaccharides. Structural analysis by X-ray crystallography explains these results in terms of changes in the protein structure and highlights further engineering approaches toward introducing the desired activity.</AbstractText>
<CopyrightInformation>© 2010 Wiley-Liss, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Addington</LastName>
<ForeName>Trevor</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Calisto</LastName>
<ForeName>Barbara</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Alfonso-Prieto</LastName>
<ForeName>Mercedes</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rovira</LastName>
<ForeName>Carme</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fita</LastName>
<ForeName>Ignasi</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Planas</LastName>
<ForeName>Antoni</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proteins</MedlineTA>
<NlmUniqueID>8700181</NlmUniqueID>
<ISSNLinking>0887-3585</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005936">Glucans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014990">Xylans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047071">beta-Glucans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>37294-28-3</RegistryNumber>
<NameOfSubstance UI="C029353">xyloglucan</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.-</RegistryNumber>
<NameOfSubstance UI="D016695">Glycosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.207</RegistryNumber>
<NameOfSubstance UI="C473049">xyloglucan - xyloglucosyltransferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.-</RegistryNumber>
<NameOfSubstance UI="D006026">Glycoside Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.73</RegistryNumber>
<NameOfSubstance UI="C028020">licheninase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001407" MajorTopicYN="N">Bacillus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057075" MajorTopicYN="N">Enzyme Assays</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005936" MajorTopicYN="N">Glucans</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006026" MajorTopicYN="N">Glycoside Hydrolases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016695" MajorTopicYN="N">Glycosyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056004" MajorTopicYN="N">Molecular Dynamics Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015202" MajorTopicYN="N">Protein Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040681" MajorTopicYN="N">Structural Homology, Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014990" MajorTopicYN="N">Xylans</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047071" MajorTopicYN="N">beta-Glucans</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21069723</ArticleId>
<ArticleId IdType="doi">10.1002/prot.22884</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Catalogne</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Alfonso Prieto, Mercedes" sort="Alfonso Prieto, Mercedes" uniqKey="Alfonso Prieto M" first="Mercedes" last="Alfonso-Prieto">Mercedes Alfonso-Prieto</name>
<name sortKey="Calisto, Barbara" sort="Calisto, Barbara" uniqKey="Calisto B" first="Barbara" last="Calisto">Barbara Calisto</name>
<name sortKey="Fita, Ignasi" sort="Fita, Ignasi" uniqKey="Fita I" first="Ignasi" last="Fita">Ignasi Fita</name>
<name sortKey="Planas, Antoni" sort="Planas, Antoni" uniqKey="Planas A" first="Antoni" last="Planas">Antoni Planas</name>
<name sortKey="Rovira, Carme" sort="Rovira, Carme" uniqKey="Rovira C" first="Carme" last="Rovira">Carme Rovira</name>
</noCountry>
<country name="Espagne">
<region name="Catalogne">
<name sortKey="Addington, Trevor" sort="Addington, Trevor" uniqKey="Addington T" first="Trevor" last="Addington">Trevor Addington</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D38 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002D38 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21069723
   |texte=   Re-engineering specificity in 1,3-1, 4-β-glucanase to accept branched xyloglucan substrates.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21069723" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020